# Mark Scheme 4726 January 2007 

$$
\begin{aligned}
1(\mathrm{i}) \mathrm{f}(\mathrm{O}) & =\operatorname{In} 3 \mathrm{f} \\
\mathrm{f}^{\prime}(0) & =1 / 3 \\
\mathrm{f}^{\prime}(\mathrm{O}) & =-1 / 9 A . G .
\end{aligned}
$$

(ii) Reasonable attempt at Maclaurin

$$
f(x)=\ln 3+1 / 3 x-1 / 18 x^{2}
$$

Bl
Bl
B1 Clearly derived
Ml Form In3 $+a x+b x^{2}$, with $a, b$ related to f " f ,
AI $\sqrt{ } J$ On their values off'and f "
SR Use $\operatorname{In}(3+x)=\operatorname{In} 3+\operatorname{In}\left(1+{ }^{1} / 3\right.$
x) Ml Use Formulae Book to get

$$
\begin{aligned}
& \text { In3 }+Y 3 X-Y 2(V J X) 2= \\
& \text { In3 }+Y 3 X-1 / g X 2
\end{aligned}
$$

B1
B1
SR Use $x=\sqrt{ } J\left(\tan ^{-1} x\right)$ and compare $x$ to
$\sqrt[J]{ }\left(\tan ^{-1} \mathrm{x}\right)$ for $x=0.8,0.9 \quad$ B 1
Explain "change in sign" B 1
B1 Get $2 x-I I\left(1+x^{2}\right)$
Ml $0.8-f(0.8) / f^{\prime}(0.8)$
Miv
Al 3d.p. - accept answer which rounds
Ml Or numeric equivalent
Al At least 3 d.p. correct
Bl AG . Inequality required
B1 Inequality or diagram required
Ml Or numeric evidence
Al cao ; or answer which rounds down
BI Correct shape for $\sinh x$
B1 Correct shape for $\operatorname{cosech} x$
B1 Obvious point ( $d y / d x \neq 0$ )/asymptotes clear

B1 May be implied
B1 Must be clear; allow 2/(eX-e-X) as mimimum simplification
M1 Or equivalent, all $x$ eliminated and not $d x=d u$
Al
A1 $\sqrt{ }$ Use formulae book, PT, or atanh ${ }^{-1}$ u
Al No need for C

5 (i) Reasonable attempt at parts Get xnsin $x-\int \sin x . n x^{n-1} d x$
Attempt parts again Accurately Clearly derive AG.
(ii) Get $I_{4}=\left(\frac{1}{2} \pi\right)^{4}-12 I_{2}$ or $I_{2}=(1 / 2 \pi)^{2}-2 I_{0}$ Show clearly $I_{0}=1$
Replace their values in relation Get $I_{4}=1 /{ }_{16} \pi^{4}-3 \pi^{2}+24$

M1 Involving second integral Al
M1
Al
A1 Indicate $(1 / 2 \pi)^{n}$ and 0 from limits

B1
B1 May use $I_{2}$
M1
A1 cao

## B1, B1, B1 Must be =; no working needed

B1 Two correct labelled asymptotes $11 O x$ and approaches

B1 Two correct labelled asymptotes 11 Oy and approaches

B1 Crosses at $(3 / 2 a, 0)$ (and $(0,0)$ - may be implied

B1 $90^{\circ}$ where it crosses $O x$; smoothly

B1 Symmetry in $O x$

M1 Allow $(A t+B) / t^{2}$; justify $B / t^{2}+D /\left(l+t^{2}\right)$ if only used

M1 $\sqrt{ }$
M1 Lead to at least two constant values Al

SR Other methods leading to correct PF can earn 4 marks; 2 M marks for reasonable method going wrong
Bl
B1
M1 Allow $k\left(l-t^{2}\right) /\left(\left(t^{2}\left(l+t^{2}\right)\right.\right.$ or equivalent $\mathrm{Al} \sqrt{ }$ From their $k$
Al

B1 Allow $\left(e^{2 Y}-1\right) /\left(e^{2 y}+1\right)$ or if $x$ used

M1 Multiply by $e^{\gamma}$ and tidy
M1
Al

M1 SR Use hyp def ${ }^{n}$ to get quad. in $e^{x}$ M I
$\mathrm{Al} \quad$ Solve $e^{2 x}=7$ for $x$ to $\frac{1}{2}$ 1n $7 \quad \mathrm{Al}$
Bl One used correctly
M1 Or $1 n\left({ }^{A} I_{B}\right)=0$
Al

9 (i)

(ii) U se correct formula with correct $r$ $f \sec ^{2} \mathrm{x} d x=\tan x$ used
Quote $f 2 \sec x \tan x d x=2 \sec x$
Replace $\tan ^{2} x$ by $\sec ^{2} x-1$ to integrate
Reasonable attempt to integrate 3 terms And to use limits correctly
Get $\sqrt{3}+1-{ }^{1 / 6} \pi$
(iii) Use $x=r \cos \theta, y=r \sin \theta, r=\left(x^{2}+y^{2}\right)^{1 / 2}$

Reasonable attempt to eliminate $r, \theta$
Get $y=(x-1) \sqrt{ }\left(x^{2}+y^{2}\right)$

B1 Shape for correct $\theta$; ignore other $\theta$
Used; start at $(r, 0)$
B1 $\theta=0, r=1$ and increasing $r$

B1
B1
B1 Or sub. correctly M1

M1
Al Exact only

M1
M1
A1 Or equivalent

