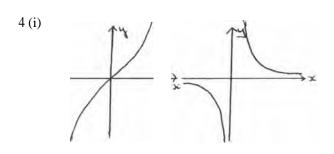
Mark Scheme 4726 January 2007

4726 Mark Scheme Jan 2007

1 (i) f(O) = In 3 f $f'(0) = \frac{1}{3}$ $f''(O) = -\frac{1}{9} A.G.$

(ii) Reasonable attempt at Maclaurin


$$f(x) = \ln 3 + \frac{1}{3}x^{-1}/_{18}x^{2}$$

2 (i) f(0.8) = -0.03, f(0.9) = +0.077 (accurately e.g. accept -0.02 t0 -0.04) Explain (change of sign, graph etc.)

(ii) Differentiate two terms Use correct form of Newton-Ra ph son with 0.8, using their f (x)Use their N-R to give one more approximation to 3 d.p. minimum Get x = 0.835

3 (i) Show area of rect. = $\frac{1}{4}(e^{1/16} + e^{1/4} + e^{9/16} + e^{1})$ Show area = 1.7054Explain the < 1.71 in terms of areas

(ii) Identify areas for > sign Show area of rect. = $\frac{1}{1}/4$ ($e^{0} + e^{1/16} + e^{1/4} + e^{9/16}$) Get A > 1.27

(ii) Correct definition of sinh x Invert and mult. by eX to AG.

Sub.
$$u = e^{x}$$
 and $du = e^{x} dx$

Replace to $2/(u^2 - 1) du$ Integrate to aln((u - I)/(u + 1))Replace u

Bl Bl B1 Clearly derived

Ml Form In3 + $ax + bx^2$, with a,brelated to f "f' $AI\sqrt{J}$ On their values of f' and f' SR Use $ln(3+x) = In3 + In(1 + \frac{1}{3})$ x) Ml Use Formulae Book to get In 3 + Y3X - Y2(VJX)2 =In3 + Y3X - 1/lgX2A1

B1 SR Use $x = \sqrt{J(tan^{-1}x)}$ and compare x to $\sqrt{J(\tan^{-1} x)}$ for x=0.8, 0.9B 1 Explain "change in sign" B 1

B1 Get $2x - I I (1 + x^2)$

M1 0.8 - f(0.8)/f '(0.8)

Ml√

B1

Al 3d.p. - accept answer which rounds Ml Or numeric equivalent Al At least 3 d.p. correct Bl AG. Inequality required

B1 Inequality or diagram required Ml Or numeric evidence Al cao; or answer which rounds down

BI Correct shape for sinh x

B1 Correct shape for cosech x

B1 Obvious point $(dy/dx \neq 0)$ /asymptotes clear

B1 May be implied

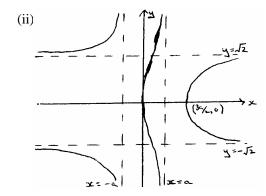
B1 Must be clear; allow $2/(eX - e^{-X})$ as mimimum simplification M1 Or equivalent, all x eliminated and

not dx = du

A1√ Use formulae book, PT, or atanh⁻¹u

Al No need for c

M1A1


4726 **Mark Scheme** Jan 2007 M1 Involving second integral Al

5 (i) Reasonable attempt at parts Get $xn\sin x - \int \sin x. \ nx^{n-1} \, dx$ Attempt parts again Accurately Clearly derive AG.

Show clearly $I_0 = 1$ Replace their values in relation Get

(ii) Get $I_4 = (^1/_2\pi)^4 - 12I_2$ or $I_2 = (^1/_2\pi)^2 - 2I_0$ **B**1 B1 May use I_2 M1 $I_4 = \frac{1}{16}\pi^4 - 3\pi^2 + 24$ A1 cao

6 (i) $x = \pm a$, y = 2

B1, B1, B1 Must be =; no working needed

A1 Indicate $(^{1}/_{2}\pi)^{n}$ and 0 from limits

B1 Two correct labelled asymptotes $\Box Ox$ and approaches

B1 Two correct labelled asymptotes || Oy and approaches

B1 Crosses at $(^{3}/_{2}a,0)$ (and (0,0) - may be implied

B1 90° where it crosses Ox; smoothly

B1 Symmetry in *Ox*

7 (i) Write as $A/t + B/t^2 + (Ct + D)/(t^2 + 1)$

Equate $At(t^2+1) + B(t^2+1) + (Ct+D)t^2$ to

Insert t values I equate coeff.

Get A = C = 0, B = L D = -2

(ii) Derive or quote $\cos x$ in terms of tDerive or quote $dx = 2 \frac{dt}{(1 + t^2)}$ Sub. in to correct P.F. Integrate to -1/t -2 $tan^{-1}t$ Use limits to clearly get AG.

8 (i) Get $(e^y - e^{-y})/(e^y + e^{-y})$

(ii) Attempt quad. in e

Clearly get AG.

Solve for e

(iv) Use of log laws

Get $x = \pm \frac{3}{5}$

M1 Allow $(At+B)/t^2$; justify $B/t^2 + D/(l+t^2)$ if only used

M1√

M1 Lead to at least two constant values

Αl

SR Other methods leading to correct PF can earn 4 marks; 2 M marks for reasonable method going wrong

B1

B1

M1 Allow $k(I-t^2)/((t^2(I+t^2)))$ or equivalent

Al $\sqrt{}$ From their k

Al

B1 Allow $(e^{2Y}-1)/(e^{2y}+1)$ or if x used

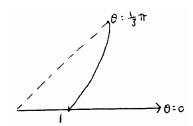
M1 Multiply by e^y and tidy

M1

Al

(iii) Rewrite as $\tanh x = k$ Use (ii) for $x = \sqrt{1} \ln 7$ or equivalent

Correctly equate $\ln A = \ln B$ to A = B


M1 SR Use hyp defⁿ to get quad. in e^XM I Solve $e^{2x} = 7$ for x to $\frac{1}{2} \ln 7$

Bl One used correctly M1 Or $1n(^{A}I_{B}) = 0$

A1

4726 Mark Scheme Jan 2007

9 (i)

- B1 Shape for correct θ ; ignore other θ Used; start at (r,0)
- B1 θ =0, r=1 and increasing r

(ii) U se correct formula with correct r $f \sec^2 x \, dx = \tan x \text{ used}$ Quote $f2 \sec x \tan x \, dx = 2 \sec x$ Replace $\tan^2 x \text{ by } \sec^2 x - 1$ to integrate
Reasonable attempt to integrate 3 terms And to use limits correctly $Get \sqrt{3} + 1 - \frac{1}{6}\pi$

B1 B1 B1 Or sub. correctly M1

(iii) Use $x = r \cos \theta$, $y = r \sin \theta$, $r = (x^2 + y^2)^{1/2}$ Reasonable attempt to eliminate r, θ Get $y = (x-1)\sqrt{(x^2 + y^2)}$ Al Exact only
M1

M1

M1 A1 Or equivalent